If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2+18a+24=0
a = 2; b = 18; c = +24;
Δ = b2-4ac
Δ = 182-4·2·24
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{33}}{2*2}=\frac{-18-2\sqrt{33}}{4} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{33}}{2*2}=\frac{-18+2\sqrt{33}}{4} $
| 10t+3t-13t+2t=20 | | 8.x-12=2x-12 | | 619+r=428 | | 1.5+1.5+1.5+1.5=m | | Y+4=3(x+1) | | 3x+120=3x+608 | | 2(10-2n)=72 | | X-12=2x-12 | | 2a^2+18a=-24 | | 2/1/5x-5=2(12/5x+3) | | 4.9t^2+6t-300=0 | | 2t^2−7t+5=0 | | 3(k–47)=84 | | 78=1.2^x | | 4x+5-3x-3=4 | | 2t2−7t+5=0 | | (3k+41/5)+83/5=k | | 3x+2/3=x-4/4 | | 0=x-872+9x/100 | | 6a+9=2a-6 | | 5x-1=2(4x-5) | | 1/2+3/5x=2/5 | | (3k+41/5)+83/5=0 | | 21/5x-5=2(12/5x+3) | | -x-3=-2x-38 | | 16.2-v=5v | | -271=5(8n+5)-3 | | 6y-2y+4y-5y+y=20 | | 4-3(x+2)=2(x-3)-2 | | 35=8x=19 | | 2x^2-28x-480=0 | | -3x+14=-10x |